Lessons from d-A physics @ RHIC

Mark D. Baker

Lessons Learned?

- Centrality in d(p)+A
 - Very valuable!
 - Tricky to do right!
 - Detector implications
- Do hard particles see "the bulk"?

Centrality in dA is valuable!

Centrality (%)	N _{part} (total)	N _{part} (Au)	N _{part} (d)	$v_{ m eff}$
0-20	15.5	13.5	2.0	6.8
20-40	10.8	8.9	1.9	
40-60	7.2	5.4	1.7	
60-80	4.2	2.9	1.4	
80-100	2.7	1.6	1.1	1.5

Minbias: 3.9

Minbias d/p+A with $v\sim6.8$: A>1000!

Npart scaling of Nch

Evolution of N_{ch}/(N_{part}/2) vs N_{part}

See nucl-ex/0409021, nucl-ex/0301017

Mark D. Baker

Effective v is meaningful

See nucl-ex/0409021

Mark D. Baker

Effective v is meaningful

• dAu & pPb per incident nucleon and approx. same N_{part}

See nucl-ex/0409021

Mark D. Baker

Hardware:

Octagon Detector (Silicon Pads)

Phobos centrality method

Compare data to fully simulated & reconstructed AMPT + Geant including trigger and event selection effects

Phobos centrality method

"ERing"

EOct is biased

Nucl. Phys. A (in press), nucl-ex/0410022

Mark D. Baker

Mark D. Baker

RHIC pA/eA Workshop, May 2004

Data ratios validate MC study

Conclusion:

- d+Au centrality must be measured using |η|>3
- •mid-rapidity measures are biased!
- PHOBOS: OK
- BRAHMS: BIASED for dN/dη
- PHENIX: OK
- STAR: OK

Nucl. Phys. A (in press), nucl-ex/0410022

Mark D. Baker

RHIC pA/eA Workshop, May 2004

Bulk dynamics in p+A

Raw dN/dy

dN/dy N_{part}/2

dN/dy' N_{part}/2

$$\sigma = \sqrt{\ln\left(\sqrt{s} / 2m\right)}$$

$$\sigma = \sqrt{\ln\left(\sqrt{s}/2m\right)} \quad y' = y + \ln\left(\sqrt{v}\right)$$

Steinberg, INPC2004

RHIC pA/eA Workshop, May 2004

Mark D. Baker

Soft & hard production...

Soft particles see full participant zone

Hard, rare partonic collisions should just see NN frame

Mark D. Baker

RHIC d+A is also a shifted symmetric distribution

Mark D. Baker Steinberg (for Phobos), QM2004

Let's play a game:

Shift PYTHIA dN/dy by $\Delta y = 1$

Scale up by N_{part}/2

Recalculate dN/dn

Similar shapes (violates energy conservation ⊗)

The bulk "triangle"

arXiv:nucl-ex/0403033

arXiv:nucl-ex/0409021

AS SEEN IN p+A AT F.T. ENERGIES 50-200 GeV

Mark D. Baker

What about "hard" particles?

See PHENIX, arXiv:nucl-ex/0411054 & BRAHMS, PRL 93 (2004) 242303 for latest data

Mark D. Baker

Who ordered that?

See PHENIX, arXiv:nucl-ex/0411054 & BRAHMS, PRL 93 (2004) 242303 for latest data

Mark D. Baker

"Hard" & "soft" particles behave similarly

— Phobos dN/dη dA/pp scaled by 1.4 /(N_{part}/2)

MDB, EIC workshop, March 2004, JLab

CGC suppression & enhancement pattern OR

Scattering from the shifted bulk (clue to Cronin?)

Mark D. Baker

Lessons Learned?

- Centrality in d(p)+A
 - Very valuable!
 - Tricky to do right!
 - Detector implications
- Hard/soft boundary is subtle
 - Do hard particles see the bulk?

Extras...

Does HIJING Reproduce the Relative Bias like Data?

Does HIJING Reproduce the Relative Bias like Data?

Answer:

Yes, HIJING Reproduces the Relative Bias as Data Mark D. Baker

Comparison dAu Minimium-bias to Parton Saturation (KLN), RQMD, HIJING and AMPT Models

• The centrality dependence in d+Au is crucial for testing the saturation approach

D. Kharzeev et al., arXiv:hep-ph/0212316